Current Status of *Dreissena polymorpha* and Biodiversity of Littoral Macroinvertebrates in Geneva Lake, Wisconsin

Cassie Taplin (UW-Superior) Geneva Lake Environmental Agency December 2016

Introduction

Geneva Lake is a beautiful glacial lake located in southeastern Wisconsin. It was created during the Late Wisconsin Glaciation between 50,000 to 100,000 years ago when the Laurentide ice sheet covered a large portion of North America. When the margin of the Delavan Lobe (a sub-lobe of the Lake Michigan Glacier) reached southeastern Wisconsin, meltwater carved the tunnel valley in which Geneva would form. When the lobe retreated, terminal and recessional moraines where left behind. These moraines give Geneva Lake its unique hydrology (Addig and Dott 2004). Due to these moraines Geneva Lake has a relatively small ratio of acres of watershed to acres of lake surface-area. There are only 2.48 acres of land for every 1 acre of surface water. Geneva's shoreline is 20.1 miles long and it has a maximum depth of 141 feet (GLEA, 2008).

Geneva Lake supports a healthy and diverse ecological system. It bounces between being a mesotrophic and oligotrophic lake. The Trophic Standard Index values for each year are determined by averaging Secchi depth, total phosphorous, and chlorophyll "a" values (Figure 1). These conditions allow the lake to host various flora and fauna. A majority of the fish in Geneva are panfish such as bluegill and pumpkinseed, but others include smallmouth and largemouth bass, northern pike, brown trout, and walleye. However, most of the larger game fish such as Walleye are not native to the lake; stocking has occurred since the late 1950s (Southeastern Wisconsin Regional Planning Commission 2008). According to a 2001 study about 22 species of zooplankton were found in Geneva Lake, the most abundant being *Eubosmina coregoni* (cladoceran), *Tropocyclops prasinus* (copepod), *Cyclops (Diacyclops) thomasi* (copepod), and *Daphnia longiremis* (cladoceran) (SWRPC 2008). In the same study 29 different species of aquatic macrophytes were documented in the lake. The most abundant macrophytes were wigeon grass, muskgrass, and eel grass (SWRPC 2008). Although Geneva is home to various native species, it is also susceptible to the threats of invasives.

Currently there are no documented species of invasive fish in Geneva (outside of stocked fish), but some prevalent invasives found in the Great Lakes of Wisconsin include the sea lamprey and round goby. Another invasive not yet found in Geneva, but in the Great Lakes, would be the zooplankton called the spiny water flea (*Bythotrephes longimanus*). This larger zooplankton preys on other zooplankton such as Daphnia that helps keep waters clear by feeding on green algae (New Scientist 2016). Geneva has also been invaded by macrophytes such as curly-leaf pondweed and Eurasian water milfoil, the latter being the most detrimental due to its aggressive proliferation that increases competition for resources with native plants (SWRPC 2008). However, one of the most notorious and prolific invasive species to inhabit Geneva's waters is the macroinvertebrate *Dreissena polymorpha*, the zebra mussel.

The zebra mussel is native to the Caspian Sea in Eastern Europe. However, it was carried via ships through canals to the Black Sea where it spread throughout central and western Europe. Eventually it was transported by trans-Atlantic ships to North America (Karatayev et al. 2014). Veligers of zebra mussels are planktonic until they mature and become sessile by attaching to hard substrates with byssal threads. It is when the mussels are in their veliger life stage that they are most easily transported. Once zebra mussels enter a system, their short reproductive cycle allows them to proliferate at high rates and dominate the littoral zone where they are well adapted to thrive. Zebra mussels physically change the littoral zone by forming druses, which are "reef-like structures" that provide shelter from predation for some macroinvertebrates like amphipods, isopods, and some species of chironomids (Karatayev et al. 2014). The zebra mussel likes calcareous water to develop its shell, which makes Geneva Lake a suitable habitat with its

3

limestone bedrock. They are aggressive filter feeders that non-selectively consume organic matter, digest only what they need, and ejest the rest. Zebra mussels are capable of filtering up to 1 liter a day (USGS, 2014). This habit means that there is a large amount of organic matter not being incorporated into their bodies and being released as pseudofeces. This process allocates nutrients from the pelagic zone into the benthic zone, which has multiple consequences (Botts et al. 1996). By removing large quantities of zooplankton and phytoplankton from the pelagic zone, the mussels are competing with fish for a food source while simultaneously increasing water clarity. Clearer water can increase light penetration, causing an increase in macrophyte populations (USGS 2014). Although some organisms benefit from the presence of zebra mussels, these invasives tend to have a dramatic impact on an ecosystem that can leave it permanently altered.

Zebra mussels were first discovered in Geneva Lake by the Geneva Lake Environmental Agency (GLEA) in the fall of 1995 (Schmalz 1996). Every four years, GLEA conducts a study to document how populations of zebra mussels and aquatic macroinvertebrates have changed. Zebra mussels were assessed using artificial substrates that were placed off of three piers. Macroinvertebrate populations were observed by collecting benthic samples from the littoral zone. Through these procedures the GLEA was able to observe how zebra mussel and macroinvertebrate populations have changed within the past four years.

Methods

The primary component of this study required the obtainment of benthic macroinvertebrate samples from the littoral zone. Two rounds of benthic samples were taken; one on July 12 and a second on August 16. Seven benthic sampling stations were established. Station descriptions and GPS coordinates are in Table 4 and represented in Figure 2. At each site three grabs were obtained with a 6" x 6" Ekman dredge. The grab was carefully lowered to the bottom and a diver ensured that the sampler was sitting flat. The diver used a sieve pail to catch any debris that may have fallen out due to improper closure of the grab from plants or rocks. The material captured from the three grabs was then placed into one labeled plastic container (two containers were used if necessary) and preserved with 70% ethyl alcohol. These samples were transported to the lab at George William's College where large debris and plants were cleaned and removed. The remaining sediment was viewed under a dissecting microscope and macroinvertebrates were removed and placed into scintillation vials. Organisms were identified to the family level (when possible) at the taxonomy lab at UW-Superior. The equation for volumetric abundance provided below was used to calculate densities:

Volumetric Abundance= $(n/36 \text{ in2}) (36 \text{ in2}/232 \text{ cm2}) (10,000 \text{ cm2}/1 \text{ m2}) = n/m^2$ 3

There was a discussion about altering how the equation was represented, but ultimately the results were the same for both versions.

Three artificial substrates were deployed to document populations of zebra mussels. The substrates consisted of four squares of plexiglass stacked on top of each other. From bottom to top, the squares' dimensions were 12" x 12", 10" x 10", 8" x 8", and 6" x 6". Substrate sampler 1 (SS1) was located on Gordy's lighthouse pier in Fontana. Substrate sampler 2 (SS2) was deployed at the Hillside Road boat launch in Linn. The third substrate sampler (SS3) was placed off of the Riviera Pier in Lake Geneva. All three substrates were deployed on June 16, 2016. Thirty-four days later on July 20 2016 the samplers were pulled and zebra mussels were counted and recorded. The substrates were completely cleaned and redeployed. Twenty-eight days later on August 17 2016 the substrates were checked again, cleaned, and redeployed. The samplers

were processed and removed from the lake sixty-five days later by Ted Peters on October 21 2016. Parameters such as time of deployment, water depth, sampler depth, temperature, Secchi depth, and weather conditions can be found in Table 1. We counted the number of mussels on the top and bottom of each square for each substrate. These numbers are recorded in Table 2. The densities of zebra mussels on the top, bottom, top and bottom combined, and on the entire sampler were calculated and are recorded in Table 3. The densities were calculated by dividing the total number of mussels counted one/both sides of a single plate or the entire sampler by the area in square meters. Below is a conversion table (Table 5) used to determine the area in square meters.

Plate	Area For One Side (in ²)	Area One Side (m ²)	Area Both Sides (m ²)	Area for Whole Sampler (m ²)
6" x 6"	36	0.0231	0.0462	0.0462+0.0826+0.129+0.186 = 0.4338
8" x 8"	64	0.0413	0.0826	
10" x	100	0.0045	0.120	
10" 12" x	100	0.0645	0.129	
12"	144	0.0929	0.186	

Table 5. Conversion table for aid in calculating densities of zebra mussels on artificial substrates.

Results

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	40	574.7
	Malacostraca	Amphipoda	Hyallelidae	2	28.7
	Malacostraca	Isopoda	Asellidae	28	402.3
	Hexapoda	Trichoptera	Hydroptilidae	25	359.2
	Hexapoda	Ephemeroptera	Caenidae	1	14.4
	Hexapoda	Diptera	Chironomidae	71	1020.1
	Hexapoda	Odonata	Coenagriondiae	1	14.4
	Hydracarina*			1	14.4
	Bivalvia	Veneroida	Dreissenidae	194	2787.4
	Gastropoda		Pleuroceridae	1	14.4
	Gastropoda		Hydrobiidae	9	129.3
	Gastropoda		Physidae	4	57.5
	Oligochaeta			28	402.3
	Hirudinea	Rhynchobdellida	Glossiphonidae	3	43.1
	Turbellaria	Tricladida		3	43.1
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	4	57.5
	Malacostraca	Amphipoda	Hyallelidae	2	28.7
	Hexapoda	Trichoptera	Hydroptilidae	6	86.2
	Hexapoda	Trichoptera	Leptoceridae	7	100.6
	Hexapoda	Ephemeroptera	Caenidae	12	172.4
	Hexapoda	Diptera	Chironomidae	82	1178.2
	Hexapoda	Odonata	Libellulidae	2	28.7
	Hydracarina			12	172.4
	Bivalvia	Veneroida	Dreissenidae	140	2011.5
	Gastropoda		Pleuroceridae	2	28.7
	Gastropoda		Hydrobiidae	93	1336.2
	Gastropoda		Physidae	2	28.7
	Gastropoda		Valvatidae	8	114.9
	Gastropoda		Viviparidae	1	14.4
	Gastropoda		Planorbidae	3	43.1
	Gastropoua		T latioi bluac	5	

*Hydracarina is a super tribe classification for mites. The nomenclature for orders under the class Gastropoda is in a state of flux and uncertainty, therefore order names for snails were not included in this report. Class Insecta was replaced with class Hexapoda; Insecta is considered a subclass.

Table 7. BS2

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	124	1781.6
	Malacostraca	Amphipoda	Hyallelidae	232	3333.3
	Malacostraca	Isopoda	Asellidae	302	4339.1
	Malacostraca	Decapoda	Cambaridae	5	71.8
	Hexapoda	Trichoptera	Hydroptilidae	5	71.8
	Hexapoda	Trichoptera	Leptoceridae	3	43.1
	Hexapoda	Ephemeroptera	Caenidae	3	43.1
	Hexapoda	Diptera	Chironomidae	210	3017.2
	Hexapoda	Odonata	Libellulidae	1	14.4
	Hydracarina			8	114.9
	Gastropoda		Pleuroceridae	5	71.8
	Gastropoda		Hydrobiidae	8	114.9
	Gastropoda		Physidae	17	244.3
	Gastropoda		Planorbidae	1	14.4
	Gastropoda		Valvatidae	2	28.7
	Oligochaeta			21	301.7
	Bivalvia	Veneroida	Dreissenidae	613	8807.5
	Pelecypoda		Sphaeriidae	1	14.4
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	14	201.1
	Malacostraca	Amphipoda	Hyallelidae	108	1551.7
	Malacostraca	Isopoda	Asellidae	1	14.4
	Hexapoda	Trichoptera	Hydroptilidae	7	100.6
	Hexapoda	Trichoptera	Leptoceridae	18	258.6
	Hexapoda	Ephemeroptera	Caenidae	12	172.4
	Hexapoda	Ephemeroptera	Baetidae	1	14.4
	Hexapoda	Diptera	Chironomidae	121	1738.5
	Hydracarina			9	129.3
	Bivalvia	Veneroida	Dreissenidae	48	689.7
	Gastropoda		Hydrobiidae	44	632.2
	Gastropoda		Physidae	20	287.4
	Gastropoda		Valvatidae	2	28.7
	Gastropoda		Viviparidae	2	28.7
	Gastropoda		Planorbidae	20	287.4

Table 8. BS3

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	48	689.7
	Malacostraca	Amphipoda	Hyallelidae	29	416.7
	Hexapoda	Trichoptera	Hydroptilidae	11	158.0
	Hexapoda	Trichoptera	Leptoceridae	1	14.4
	Hexapoda	Ephemeroptera	Caenidae	28	402.3
	Hexapoda	Diptera	Chironomidae	62	890.8
	Hydracarina			12	172.4
	Gastropoda		Hydrobiidae	28	402.3
	Gastropoda		Physidae	9	129.3
	Gastropoda		Planorbidae	1	14.4
	Gastropoda		Valvatidae	9	129.3
	Oligochaeta			41	589.1
	Hirudinea	Rhynchobdellida	Glossiphonidae	15	215.5
	Bivalvia	Veneroida	Dreissenidae	221	3175.3
	Pelecypoda		Sphaeriidae	11	158.0
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	162	2327.6
	Malacostraca	Amphipoda	Hyallelidae	11	158.0
	Hexapoda	Trichoptera	Hydroptilidae	12	172.4
	Hexapoda	Trichoptera	Leptoceridae	16	229.9
	Hexapoda	Ephemeroptera	Caenidae	47	675.3
	Hexapoda	Diptera	Chironomidae	175	2514.4
	Hexapoda	Odonata	Libellulidae	1	14.4
	Hydracarina			7	100.6
	Bivalvia	Veneroida	Dreissenidae	234	3362.1
	Pelecypoda		Sphaeriidae	5	71.8
	Gastropoda		Hydrobiidae	111	1594.8
	Gastropoda		Physidae	7	100.6
	Gastropoda		Valvatidae	22	316.1
	Gastropoda		Planorbidae	8	114.9
	Oligochaeta			14	201.1
	Hirudinea	Rhynchobdellida	Glossiphonidae	8	114.9

Table 9. BS4

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	, Gammaridae	7	100.6
	Malacostraca	Amphipoda	Hyallelidae	10	143.7
	Malacostraca	Isopoda	Asellidae	82	1178.2
	Hexapoda	Trichoptera	Hydroptilidae	4	57.5
	Hexapoda	Trichoptera	Leptoceridae	10	143.7
	Hexapoda	Diptera	Chironomidae	100	1436.8
	Hydracarina			8	114.9
	Gastropoda		Hydrobiidae	10	143.7
	Gastropoda		Physidae	22	316.1
	Gastropoda		Planorbidae	6	86.2
	Oligochaeta			12	172.4
	Hirudinea	Rhynchobdellida	Glossiphonidae	2	28.7
	Bivalvia	Veneroida	Dreissenidae	87	1250.0
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	25	359.2
	Malacostraca	Amphipoda	Hyallelidae	2	28.7
	Malacostraca	Isopoda	Asellidae	5	71.8
	Hexapoda	Trichoptera	Hydroptilidae	13	186.8
	Hexapoda	Trichoptera	Leptoceridae	33	474.1
	Hexapoda	Ephemeroptera	Caenidae	1	14.4
	Hexapoda	Diptera	Chironomidae	450	6465.5
	Hexapoda	Odonata	Coenagriondiae	1	14.4
	Hexapoda	Coleoptera	Curculionidae	1	14.4
	Bivalvia	Veneroida	Dreissenidae	172	2471.3
	Pelecypoda		Sphaeriidae	8	114.9
	Gastropoda		Pleuroceridae	1	14.4
	Gastropoda		Hydrobiidae	55	790.2
	Gastropoda		Physidae	6	86.2
	Gastropoda		Planorbidae	5	71.8
	Oligochaeta			35	502.9
	Hirudinea	Rhynchobdellida	Glossiphonidae	1	14.4

Table 10. BS5

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	122	1752.9
	Malacostraca	Amphipoda	Hyallelidae	86	1235.6
	Malacostraca	Isopoda	Asellidae	84	1206.9
	Malacostraca	Decapoda	Cambaridae	1	14.4
	Hexapoda	Trichoptera	Hydroptilidae	2	28.7
	Hexapoda	Ephemeroptera	Baetidae	1	14.4
	Hexapoda	Diptera	Chironomidae	57	819.0
	Hydracarina			3	43.1
	Gastropoda		Hydrobiidae	5	71.8
	Gastropoda		Physidae	4	57.5
	Gastropoda		Planorbidae	4	57.5
	Gastropoda		Valvatidae	6	86.2
	Gastropoda		Viviparidae	2	28.7
	Oligochaeta			11	158.0
	Bivalvia	Veneroida	Dreissenidae	155	2227.0
	Pelecypoda		Sphaeriidae	1	14.4
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	46	660.9
	Malacostraca	Amphipoda	Hyallelidae	120	1724.1
	Malacostraca	Isopoda	Asellidae	35	502.9
	Hexapoda	Trichoptera	Hydroptilidae	6	86.2
	Hexapoda	Trichoptera	Leptoceridae	3	43.1
	Hexapoda	Ephemeroptera	Caenidae	10	143.7
	Hexapoda	Diptera	Chironomidae	39	560.3
	Hexapoda	Megaloptera	Sialidae	1	14.4
	Hydracarina			5	71.8
	Bivalvia	Veneroida	Dreissenidae	103	1479.9
	Pelecypoda		Sphaeriidae	1	14.4
	Gastropoda		Pleuroceridae	2	28.7
	Gastropoda		Hydrobiidae	227	3261.5
	Gastropoda		Valvatidae	1	14.4
	Gastropoda		Planorbidae	6	86.2
	Oligochaeta			8	114.9

Table 11. BS6

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	60	862.1
	Malacostraca	Amphipoda	Hyallelidae	8	114.9
	Malacostraca	Isopoda	Asellidae	181	2600.6
	Malacostraca	Decapoda	Cambaridae	2	28.7
	Hexapoda	Trichoptera	Hydroptilidae	3	43.1
	Hexapoda	Diptera	Chironomidae	13	186.8
	Hydracarina			3	43.1
	Gastropoda		Hydrobiidae	7	100.6
	Gastropoda		Planorbidae	6	86.2
	Gastropoda		Valvatidae	1	14.4
	Gastropoda		Viviparidae	1	14.4
	Oligochaeta			2	28.7
	Bivalvia	Veneroida	Dreissenidae	105	1508.6
Date	Class	Order	Family	Count	Density (n/m ²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	9	129.3
	Malacostraca	Amphipoda	Hyallelidae	37	531.6
	Hexapoda	Trichoptera	Hydroptilidae	8	114.9
	Hexapoda	Trichoptera	Leptoceridae	3	43.1
	Hexapoda	Ephemeroptera	Caenidae	43	617.8
	Hexapoda	Diptera	Chironomidae	52	747.1
	Hydracarina			1	14.4
	Bivalvia	Veneroida	Dreissenidae	30	431.0
	Gastropoda		Hydrobiidae	46	660.9
	Gastropoda		Physidae	4	57.5
	Gastropoda		Planorbidae	3	43.1

Table 12. BS7

Date	Class	Order	Family	Count	Density (n/m²)
7/12/2016	Malacostraca	Amphipoda	Gammaridae	14	201.1
	Malacostraca	Amphipoda	Hyallelidae	1	14.4
	Malacostraca	Isopoda	Asellidae	188	2701.1
	Hexapoda	Trichoptera	Hydroptilidae	6	86.2
	Hexapoda	Trichoptera	Leptoceridae	3	43.1
	Hexapoda	Ephemeroptera	Caenidae	1	14.4
	Hexapoda	Diptera	Chironomidae	52	747.1
	Hydracarina			2	28.7
	Gastropoda		Hydrobiidae	9	129.3
	Gastropoda		Planorbidae	5	71.8
	Oligochaeta			12	172.4
	Bivalvia	Veneroida	Dreissenidae	86	1235.6
Date	Class	Order	Family	Count	Density (n/m²)
8/16/2016	Malacostraca	Amphipoda	Gammaridae	32	459.8
	Malacostraca	Amphipoda	Hyallelidae	8	114.9
	Malacostraca	Isopoda	Asellidae	19	273.0
	Hexapoda	Trichoptera	Hydroptilidae	2	28.7
	Hexapoda	Trichoptera	Leptoceridae	5	71.8
	Hexapoda	Ephemeroptera	Caenidae	3	43.1
	Hexapoda	Ephemeroptera	Baetidae	1	14.4
	Hexapoda	Diptera	Empididae	1	14.4
	Hexapoda	Diptera	Chironomidae	76	1092.0
	Hydracarina			4	57.5
	Bivalvia	Veneroida	Dreissenidae	20	287.4
	Gastropoda		Hydrobiidae	116	1666.7
	Gastropoda		Physidae	3	43.1
	Gastropoda		Planorbidae	1	14.4
	Oligochaeta			3	43.1

Conclusion

I calculated the percent change in densities of taxa from 2012 to 2016 to see what general changes have occurred since 2012. I then took a broader look at all of the data going back to 1996 to see general trends in taxa densities. Overall, from 2012 to 2016 an increase was observed in the diversity and density of multiple taxa. I will first discuss each sampling station individually.

BS1 was located by pier 61 on the north shore, east of the narrows. Comparing the first sampling dates, July 11 2012 vs July 12 2016, there was in increase in the densities of the families Gammaridae (amphipod, by 90%), Asellidae (isopod, by 96%), Chironomidae (fly, by 94%), Dreissenidae (zebra mussel, by 21 %), and Hydrobiidae (snail, by 44%). Some taxonomic groups that were found in 2016, but not in 2012 during the first round of sampling are the class Oligochaeta (worm) and class Tricladida (flatworm). Comparing the second sampling dates, August 20 2012 vs August 16 2016, there was in increase in the densities of the family Gammaridae (25%), Chironomidae (99%), and Dreissenidae (78%). Regarding both sampling years (2012 vs 2016) there was a decrease in the snail families Physidae (60%), Valvatidae (100%), and Viviparidae (100%). This current year was the first time the families Libellulidae (dragonfly), Glossiphoniidae (leech), and the super tribe Hydracarina (mites) have been captured at BS1. The highest density recorded of Asellidae at BS1 was represented this year at 402 n/m².

BS2 was located in front of Stone Manor. There was an increase in the number of taxa found for both sampling dates. Comparing July 11 2012 vs July 12 2016, there was an increase in the Families Gammaridae (97%), Asellidae (99%), Chironomidae (99%), Libellulidae (51%), Pleuroceridae (snail, 90%), and Dreissenidae (54%). There was a decrease in the snail families Planorbidae (88%), Valvatidae (91%), and Viviparidae (100%). For the second sampling dates, August 20 2012 and August 16 2016, the number of taxa present increased from 4 to 16. There was in increase in the families Leptoceridae (caddisfly, 70%) and Chironomidae (93%). Dreissenidae decreased by 93%.

BS3 was located in front of Lake Geneva Country Club. For the first sampling dates there was an increase in the number of taxa represented from 10 to 15. There was in increase in Chironomidae (95%), Dreissenidae (71%), and Oligochaeta (98%). There was a decrease in the snail families Physidae (64%) and Valvatidae (23%). For the second round of sampling there

was an increase in the families Gammaridae (97%), Dreissenidae (23%), and Chironomidae (97%). The taxa represented increased from 8 to 16.

BS4 was located by the Chicago Club on the south shore near Fontana. For the first and second sampling dates the number of taxa represented increased from 9 to 13 and 11 to 17, respectively. For the first sampling dates, there was an increase in the families Chironomidae (97%), Asellidae (71%), and Physidae (54%). There was a slight decrease in the families Gammaridae and Glossiphoniidae, but a larger decrease in Dreissenidae (92%). This site experienced the highest density of Dreissenidae in 2012 at 16,379 n/m². For the second sampling date, there was in increase in the families Gammaridae (84%), Dreissenidae (32%), Asellidae (81%), Chironomidae (95%), Hydrobiidae (98%), and Physidae (17%). The snail families Valvatidae and Viviparidae were not represented at this site in 2016. This is the first time that GLEA has captured a Curculionidae, or weevil beetle. This is a highly diverse family that is easily recognizable by the adult's elongate snout. Each species specializes in consuming a particular plant, and with the aid of my Aquatic Entomology professor Dr. Kurt Schmude we believe it to be the species *Euhrychiopsis lecontei* (Figure 5). This species specializes in consuming Eurasian milfoil (Jester et al 1997).

BS5 was located in front of George William's College in William's Bay. Taxa representation jumped from 2012 to 2016 from 6 to 16 for the first sampling dates and 6 to 17 for the second sampling dates. For the first sampling date, there was an increase in the family Asellidae (80%), but a decrease in the snail families Valvatidae (65%), Viviparidae (87%), Planorbidae (69%), and Dreissenidae (45%). For the second round of sampling there was an increase in Chironomidae (21%) and Dreissenidae (49%). This was the first time that GLEA has captured a member of the family Sialidae, or the alderflies. Sialidae is one of the two aquatic families from the order Megaloptera.

BS6 was located at Pier 229 on the East shore of William's Bay. For the first sampling dates, there was an increase in the families Gammaridae (41%), Asellidae (95%), and Hydrobiidae (86%). There was a decrease in Planorbidae (45%), Valvatidae (99%), Viviparidae (91%), Dreissenidae (84%), and Chironomidae (32%). For the second sampling dates, there was a decrease in the families Gammaridae (78%), Planorbidae (40%), Valvatidae (100%), Viviparidae (100%), Viviparidae (82%). Chironomidae increased by 82%.

BS7 was located on the north shore to the west of the narrows. For the first sampling dates there was an increase in the families Asellidae (95%) and Chironomidae (73%). There was a decrease in Gammaridae (60%), Dreissenidae (28%), Hydrobiidae (40%), and Planorbidae (91%). For the second sampling date, there was an increase in the family Gammaridae (40%), Asellidae (53%), and Dreissenidae (78%). The families Valvatidae and Viviparidae were not represented like they were in 2012. This is was the first time that GLEA captured a member of the family Empididae, or shore flies.

Overall, an increase was observed in the density and presence of multiple families. As literature suggests there has been a significant jump in the abundance of Gammaridae, Asellidae, and Chironomidae due to the presence of zebra mussels (Karatayev et al. 2014). In the 2004 and 2008 studies, Chironomidae was reported as being absent or present at low densities (between 50-150 n/m^2). In 2012 chironomids were found at each benthic sampling station at densities around 50-100 n/m^2 . This year, chironomid densities increased back to 1996 and 2000 levels ranging from 700-7,000 n/m². The sudden drop in Chironomidae is unusual; chironomids are able to occur in a wide range of habitats at high densities (Hammond 2009). A previously unrecorded family of amphipods, Hyalellidae (genus Hyalella), was documented this year; it was found at all 7 sampling sites. The 2012 intern Brian Schmidt noted a jump in the caddis fly family Leptoceridae (Schmidt, 2012). Although the densities were not as great in 2012, Leptoceridae was found at all 7 sampling sites along with the caddisfly family Hydroptilidae and the may fly family Caenidae. Genera of Hydroptilidae identified were Hydroptila, Agraylea, Orthotrichia, and Oxyethira. Genera of Leptoceridae were Oecetis, Nectopsyche, and Leptocerus. There was no mention of Hydracarina (water mites) since 1996; this year they were found at all 7 sampling sites. The leech family Glossiphoniidae has not been mentioned since 1996, but was found at 4 of the sampling sites. Schmidt also mentioned an increase in some snail families such as Hydrobiidae, Planorbidae, Valvatidae, and Viviparidae (Schmidt, 2012). The family Hydrobiidae was definitely the most abundant and has maintained high densities. In most cases, however, there was a decrease in the snail families Planorbidae, Valvatidae, and Viviparidae. As Schmidt (2012) suggested, the emergence of some families may be due to the stabilization of Dreissenidae (densities of Dreissenidae increased and decreased at various sites). Another explanation for the increase in taxa this year could be due to a change in methodology for processing the samples. In previous studies, a hand lens was used to sort through the samples, whereas I used a dissecting microscope that allowed me to observe smaller organisms difficult to see without higher magnification.

For the artificial substrate samplers it seems that the mussels prefer to attach to the bottom side of the squares. The reason for this is uncertain; it may have something to do with photosensitivity, especially since water clarity has increased allowing for deeper light penetration. It is important to note that the samplers have not be deployed since 2009, so I cannot say how numbers have changed within the past few years directly. It is also important to note, however, that there were thousands of veligers on the substrates in 2016 that were too small to see with the naked eye. Unfortunately, the veligers were so small that it was difficult to identify them as zebra mussels and therefore they could not be included in the final density calculations. There is a picture of the veligers in Figure 4. One possible explanation for this is that in 2016 we counted earlier in the summer than in 2009; the veligers on the substrates may have just attached and did not have the same amount of time to grow. This is only a potential explanation based off of knowledge of the zebra mussel's lifecycle (zebra mussels typically reproduce during the spring (Knigge et al. 2015)) and has not been tested or verified in any way.

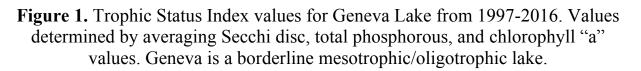
Acknowledgements

I would like to thank Ted Peters and the Geneva Lake Environmental Agency for giving me the opportunity to work for them this summer. It was an incredibly valuable experience, and I feel like I have improved professionally and gained tremendous experience conducting field work and analyzing data. I would also like to thank Dr. Kurt Schmude for lending me his expertise in aquatic entomology and macroinvertebrates and allowing me to use his taxonomy lab and resources at UW-Superior.

Figures and Tables Trophic Status Index for Geneva Lake, WI

TSI Value

20.0


10.0

0.0

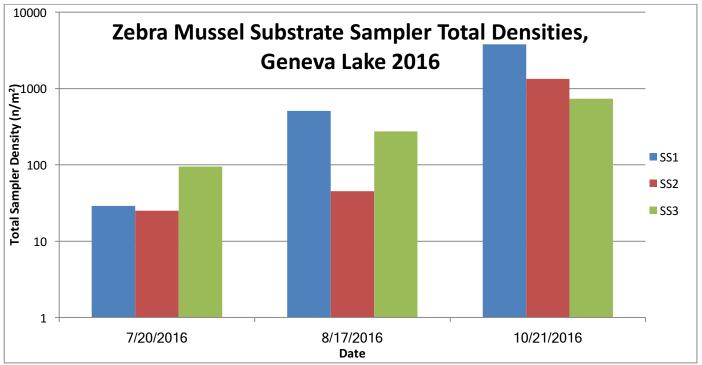
7₉₉0

79₉₅

7₉₉₉

year

200


200 2020

7073

202.

2018

Figure 2. Locations of the 7 benthic sampling stations.

Figure 3. Total densities of zebra mussels on artificial substrate samplers at SS1(Fontana), SS2 (Linn), and SS3 (Lake Geneva) 2016.

Figure 4. Unidentified mussel veligers from artificial substrates.

Figure 5. Curculionidae (weevil beetle), *Eurychiopsis lecontei*, that found at BS4.

Deployment: 6/16/	Location	Time	Water Temp (F)	Water Depth	Comments					
42 ⁰ 35' 21.14"N 88 ⁰ 26'	Riviera, LG	10:58	71	2 m	West end of piers					
42 ⁰ 33' 30.82" N, 88 ⁰ 27	Robinsin Hills	11:36	71	2 m	First horse to the	W (left) at	end of pier			
42 ⁰ 33' 1.66" N, 88 ⁰ 34'	Gordy's Fonta	12:50	70	2.5 m	Lighthouse pier, a	t end N ne	ext to light house			
Date: 7/20/2016	Location	Time	Water Temp (F)	Depth (Sampler)	Secchi (m)	days	Comments			
42 ⁰ 35' 21.14"N 88 ⁰ 26'	Riviera, LG	10:35	80.6	1.17 m	1.75*	25	Mostly sunny, wind	SW 5-7 mph,	water ch	oppy*
42 ⁰ 33' 30.82" N, 88 ⁰ 27	Robinson Hill	11:00	82.4	1.42 m	2.25*	25	Mostly sunny, calm	, A 87.8 F*		
42 ⁰ 33' 1.66" N, 88 ⁰ 34'	Gordy's, Font	11:30	83	1.78 m	2.15*	25	Sunny, light breeze	SW, Air 87 F*	:	
	Thousands of	f microsco	pic mussel veligers	s found on each si	ubstrate. Unable t	o identify	as zebra mussels.			
Date: 8/17/2016	Location	Time	Water Temp (F)	Depth (Sampler)	Secchi (m)	days	Comments			
42 ⁰ 35' 21.14"N 88 ⁰ 26'	Riviera, LG	13:18	80.6	1.17 m	1.75*	29	Sunny, Air 77.9 F, Li	ght E breeze		
42 ⁰ 33' 30.82" N, 88 ⁰ 27	Robinson Hill	14:12	80.6	1.42 m	2.25*	29	Sunny, Air 93.2 F, Li	ght E breeze		
42 ⁰ 33' 1.66" N, 88 ⁰ 34'	Gordy's, Font	10:30	77.9	1.78 m	2.15*	29	Sunny, Air 77 F, Ligł	nt E breeze		
	*Bottom									
	Thousands of	f microsco	pic mussel veligers	s found on each si	ubstrate. Unable t	o identify	as zebra mussels.			
Date: 10/21/2016	Location	Time	Water Temp (F)	Depth (Sampler)	Secchi (m)	days	Comments			
42 ⁰ 35' 21.14"N 88 ⁰ 26'	Riviera, LG	14:20	60	1.17 m	1.75*	65	80% cloudy, lt. NE v	vind,Air 50 F v	waves >4'	I
42 ⁰ 33' 30.82" N, 88 ⁰ 27	Robinson Hill	14:48	58	1.42 m	2.25*	65	90% Cloudy, It NE w	<i>i</i> nd, 7-10 mp	h. Air 50.0) Waves 6-9"
42 ⁰ 33' 1.66" N, 88 ⁰ 34'	Gordy's, Font	15:25	60	1.78 m	2.15*	65	100% Cloudy, lt. NE	wind 7-5 mp	h, air 50.0)F, waves 4-6"
	Still many sm	all micros	copic mussel vellig	gers found on bott	om of each substr	rate layer	However, they app	ear bigger tha	an previou	us month.
	Noticed many	other sma	all molluscs other th	an zebra mussels.						

Table 1. Parameters recorded during initial deployment of zebra mussel artificial substrate and subsequent counts. Water depths/Secchi depths estimated by meter markings on rope.

Date: 7/20/2	016		# Mu	ıssels	Da	Date: 8/17/2016			ŧ Mı	ussels
Location	Squ	are	Тор	Bottom	Lo	cation	Square	То	р	Bottom
Lake Geneva	6" x	6"	0	9	Lał	ke Geneva	6" x 6"	17	7	19
	8" x	8"	2	2			8" x 8"	28	3	9
	10"	x 10"	0	8			10" x 10"	21		3
	-	x 12"	3	18			12" x 12"	21		4
Linn	6" x		0	0	Lin	n	6" x 6"	0		6
	8" x	: 8"	0	1			8" x 8"	1		2
		x 10"	0	2			10" x 10"	1		4
	-	x 12"	2	6			12" x 12"	1		5
Fontana	6" x		1	7	Fo	ntana	6" x 6"	27	7	69
	8" x		0	2			8" x 8"	13	3	32
		x 10"	0	1			10" x 10"	14	ł	8
	12"	x 12"	1	1			12" x 12"	25	5	19
		Date:	10/21/2016			#	Mussels			
		Locatio	on	Square		Тор	Bottor	n		
		Lake G	ieneva	6" x 6"		5	61			
		65 day	S	8" x 8"		29	26			
				10" x 10"		27	130			
				12" x 12"		17	30			
		Linn		6" x 6"		4	146			
		65 day	S	8" x 8"		46	78			
				10" x 10"		42	191			
				12" x 12"		27	59			
Fontar		าล	6" x 6"		8	325				
		65 day	S	8" x 8"		4	517			
				10" x 10"		25	277			
				12" x 12"		34	493			

Table 2. Raw data of zebra mussel from artificial substrates processed on7/20/2016, 8/17/2016, and 10/21/2016.

Date: 7/20/202	16	Densities (n/m²)							
Location	Square	Тор	C	Bot	ttom	Co	mbined	Whole Substrate	
Lake Geneva	6" x 6"		0		388		194		
	8" x 8"		48		48	48			
	10" x 10"	0			124		62		
	12" x 12"		32		194		113	95	
Linn	6" x 6"		0		0		0		
	8" x 8"		0		24		12		
	10" x 10"		0		31		16		
	12" x 12"		22		65		43	25	
Fontana	6" x 6"		43		302		172		
	8" x 8"		0		48		24		
	10" x 10"		0		16		8		
	12" x 12"		11		11		11	29	
Date: 8/17/20	16				D	ens	ities (n/n	1 ²)	
Location	Square	То	p	Bot	ttom	Со	mbined	Whole Substrate	
Lake Geneva	6" x 6"		733		819		776		
	8" x 8"		678		218	448			
	10" x 10"	326			47	186			
	12" x 12"		226		43		135	275	
Linn	6" x 6"		0		259		129		
	8" x 8"	24			48		36		
	10" x 10"	16		62			39		
	12" x 12"	11		54			32	45	
Fontana	6" x 6"		1164		2974	2069			
	8" x 8"		315		775		545		
	10" x 10"		217		434		326		
	12" x 12"		269	205		237		511	
Date: 10/21/20	016					De	nsities (n	/m²)	
Location	Square		Тор		Botton	n	Combine	d Whole Substrate	
Lake Geneva	6" x 6"		216	;	2,62	9	1429		
42 ⁰ 35' 21.14"N	8" x 8"		702		630		666		
88 ⁰ 26' 12.95" V			419		2,01		1217		
	10" x 10		183		323		253	732	
Linn	6" x 6"		172		6,29		3247		
42 ⁰ 33' 30.82" N			1,11		1,88		1501		
42 33 30.82 1 88 ⁰ 27' 44.86" V			651		2,96		1806		
00 21 44.00 V	10 x 10 12" x 12		291		635		462	1,336	
Fontana								1,550	
Fontana	6" x 6"		345		14,00		7208		
42 ⁰ 33' 1.66" N	8" x 8"		97		12,51		6308		
88 ⁰ 34' 19.70" V			388		4,295		2341		
	12" x 12	"	366	j i	5,30	7	2833	3,792	

Table 3. Calculated densities of zebra mussels on artificial substrates.

SITE INFO	SITE INFORMATION FOR BENTHIC SAMPLING							
Site ID	Common Name	Depth(m)	Coordinates					
BS1	East of Pier #61, E. of Narrows	1.7	N 42 34.401'					
	N. shore, near LG		W 88 28.153'					
BS2	In front of Stone Manor, East	2.5	N 42 34.953'					
	Shore of Geneva Bay		W 88 26.126'					
BS3	In front of Lake Geneva	1.6	N 42 33.795'					
	Country Club, S. Shore, Linn		W 88 28.308'					
BS4	In front of Chicago Club	1.2	N 42 33.029'					
	Estates, S. Shore, Fontana		W 88 31.886'					
BS5	In front of George William's	2.1	N 42 33.944'					
	College, N. Shore		W 88 33.344'					
BS6	In front of pier #229, E. Shore	2.2	N 42 34.487'					
	William's Bay		W 88 31.797'					
BS7	In front of pier #130, W of	2	N 42 34.469'					
	The Narrows on N. Shore		W 88 30.142'					

*GPS coordinates taken from study by Brian Schmidt in 2012.

Table 4. Descriptions of each benthic sampling station.

Works Cited

Botts, P.S., Patterson B. A, and Schloesser, D. W. 1996. Zebra mussel effects on benthic invertebrates: physical or biotic? Journal of the North American Benthological Society, 15: 179–184. doi:10.2307/1467947

Dott, Robert H, and Attig, John W. 2004. Roadside Geology of Wisconsin. Missoula, MT: Mountain

GLEA (Geneva Lake Environmental Agency), Ted W. Peters. September 2008. Summary of the Lake Management Plan for Geneva Lake.http://www.genevaonline.com/~glea/manage.php.

Hammond, George. 2009. Chironomidae. Animal Diversity. University of Michigan, http://animaldiversity.org/accounts/Chironomidae--Chironomidae/>.

Jester, L. L., Bozek, M. A., Sheldon, S. P., and Helsel, D. R. 1997. New records for *Euhrychiopsis lecontei* (Coleoptera: Curculionidae) and their densities in Wisconsin lakes. Great Lakes Entomology. 30: 169-176.

Karatayev, Alexander Y., Lyubov, Burlakova E., and Padill, Dianna K. 2014. "Zebra versus quaggamussels: a review of their spread, population dynamics, and ecosystem impacts." Hydrobiologia 746: 97–112.

Knigge, Thomas; Dahboul, Fatima; Alain, Damien; Monsinjon, Tiphaine. The Gametogenic Cycle And Oestradiol Levels In The Zebra Mussel Dreissena Polymorpha: A 1-Year Study. Journal Of Molluscan Studies 81.1 (2015): 58-65.

MNDNR. (2016). Zebra mussel - invasive species: Minnesota DNR. Retrieved from http://www.dnr.state.mn.us/invasives/aquaticanimals/zebramussel/index.html

Schmalz, Patrick. "Status of *Dreissena Polymorpha* and Other Littoral Macroinvertebrates in Geneva Lake, Wisconsin". Geneva Lake Environmental Agency. December 1996. Schmidt, Brian. "Effects Of Dreissena Polymorpha On The Benthic-Littoral Macroinvertebrate Community in Geneva Lake, Wisconsin.

SWRPC (Southeastern Wisconsin Regional Planning Commission), Geneva Lake Environmental Agency, and USGS. A Lake Management Plan for Geneva Lake, 2008. WIDNR Lake Management Planning Grant Program, 2008.

"Tiny Flea Makes For Murky Lake Waters." New Scientist. 229.3066 (2016): 17. Academic Search Complete. Web. 11 Aug. 2016.

USGS. (2014, June 26). Zebra mussel (Dreissena polymorpha) - FactSheet. NAS Nonindigineous Aquatic Species. http://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=5